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The far field of a lifting three-dimensional wing in transonic flow is analysed. The 
boundary-value problem governing the flow far from the wing is derived by the 
method of matched asymptotic expansions. The main result is to show that corrections 
which are second order in the near field make a first-order contribution to the far field. 
The present study corrects and simplifies the work of Cheng & Hafez (1975) and 
Barnwell (1 975). 

1. Introduction 
This paper is concerned with the transonic flow over thin lifting wings. In  particular, 

the flow far from the wing is discussed. A number of authors have studied the transonic 
flow far from wings and bodies. One of the most important contributions to our 
understanding of these flows is the transonic area rule. This area rule (see, e.g. 
Oswatitsch 1952) states that the transonic flow far from a wing-body combination 
is the same as that produced by an equivalent body of revolution having the same 
axial distribution of cross-sectional area. This rule has been established for slender 
bodies by Oswatitsch (1952) and Cole & Messiter (1957). Spreiter & Stahara (1971) 
extended this to non-slender wings, i.e. wings having an aspect ratio of order one. 
Ashley & Landahl (1965) also extended the theory to include wings a t  an angle of 
attack comparable to their thickness. Generally, the area rule is deduced by deriving 
the boundary-value problem governing the flow far from the wing or body; this 
boundary-value problem is seen to be identical to that for a slender body of 
revolution, provided that the streamwise rate of change of cross-sectional area is 
the same for both. 

Hayes (1954) has pointed out that the transonic area rule fails when the volume of 
the wing is sufficiently small. Cheng & Hafez (1972, 1973, 1975) and Barnwell (1973, 
1975) have studied the effect of lift on the transonic area rule. The study presented 
here treats the case of a lifting wing with no thickness. With this simple case it is 
easy to illustrate the basic theory and the main effect of lift on the far field. The 
boundary-value problem governing the flow far from the wing is obtained through 
a straightforward application of the method of matched asymptotic expansions. 

Our main interest here is in the basic theory of lifting wings in transonic flow; for 
a more completediscussion of the flow from aphysical point of view, and of extensions 
to the basic theory, we refer the reader to the references cited above. 

In  § 6 we review and discuss the previous investigations of Cheng & Hafez (1  975) 
and Barnwell (1975). In most respects our work agrees with the above authors. How- 
ever, there are important differences in our expressions for the boundary condition 
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(a ) 

FIGURE 1. Sketch of wing and co-ordinate system. (a) Plan 
view; (b) rear view, r F (22 + y2) *. 

for the outer flow; the disagreement with the results of Cheng & Hafez is due to 
fundamental differences in the matching. 

2. Mathematical formulation 
The co-ordinate system used is sketched in figure 1 ; the origin is taken a t  the nose 

of the wing, the x axis is aligned with the undisturbed uniform flow, and the z axis is 
taken as approximately perpendicular to the wing surface. A typical wing has been 
sketched; it has a length 1 and a span of 2b. The equations defining the wing are 

z = %"(x, y; 1; b ;  a) = alZ (;, - - ;; ;) 
for a,(x/l) < y/1 < a2(x/l); the functions a, and a2 give the leading edges of the wing 
as well as the outer edges of the trailing vortex sheet. The function Z is taken to be 
some sufficiently smooth function of x and y. Because it defines a single surface in 
space, the wing has no thickness. The aspect ratio is taken to be of order one; i.e. bll 
will be assumed to be of order one. To eliminate unnecessary writing, the independent 
variables x, y and z will be scaled by I ;  otherwise the quantity b / l  = O(1) will appear 
throughout the calculations. For the sake of simplicity Cheng & Hafez (1975) assume 
that 2 is such that there are no singularities a t  the leading edges. In fact, they assume 
that the velocity perturbations are zero at  the leading edges and the outer edges of the 
trailing vortex sheet; here we assume this as well. By making this assumption we 
avoid the difficulties associated with leading edge singularities and separation addressed 
by Barnwell (1975). The small parameters of the problem are 01, which gives a measure 
of the angle of attack of the wing, and Mg- 1, which indicates that the flow is 
transonic; here M, = U/u,, where U is the speed of the undisturbed uniform flow and 
a, is the ambient sound speed. 
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The flow is assumed to be irrotational; a velocity potential q5 * therefore exists and 
the inviscid equations of motion of a perfect gas may be written 

where 

a2 ai+yE![u2- 2 v$* 2 -v4*l* 
a is the local speed of sound in the gas and the y is the ratio of specific heats. The last 
equation is just the Bernoulli equation for steady isentropic flow. The velocity 
potential $* contains a part due to the uniform stream and a part due to the per- 
turbation of the wing. It will be convenient to work with the equation for the perturba- 
tion potential, $, defined by 

In  terms of $, the equation of motion is 

$* = Ux+$. 

exactly. The boundary condition on the wing is 

$a = ( U + $ z X x + $ $ q g  (2) 

on z = %"(x, y;l;  b;a ) .  As x 2 + y 2 + z 2 - + ~ ,  it  is further required that IV$(+O. 
In  the following sections, solutions to (1) and (2) are soughtwhich are valid for small 

a and M i  - 1.  In  5 3 the solution valid near the wing is derived; this will be called the 
inner solution. Because the inner solution neglects certain nonlinear terms in (11, id 
fails to give a valid description of the flow at large distances fmm the wing. An 
approximation to ( 1 )  which is valid at large distances from the wing is derived in 
Q 4. There i t  is shown that, to lowest order, the flow is governed by the small disturb- 
ance transonic equation; the region in which this is valid is called the outer region. 
The boundary condition satisfied by the first term of the outer expansion is obtained 
by a matching with the inner solution; this is done in 9 5. There it is seen that every 
term in the inner solution contributes to the boundary condition for theouter problem; 
the resultant boundary condition for the outer problem will therefore be an infinite 
sum of terms. The outer expansion will be written 

$ = u?fo @o(% 9, w )  + .(for, 

where 2 and P are just scaled values of x and r (see figure 1 b ) ;  the function Q0 wilt be 
shown to satisfy 

as B-+ 0, and P - W O u ,  @op, QOE+ 0, as P - +  00. Here the dots indicate terms which are of 
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order P ln3 P and higher in P. An analogous result has been obtained by Cole & Messiter 
(1957) for the case of a slender axisymmetric body in transonic flow, see, e.g. their 
equation 5.9. Note also that the terms shown in (3) are singular as P+ 0,  whereas the 
unwritten terms vanish in this limit. In  $5,  it is further assumed that (Do may be 
uniquely determined by a specification of the singularities a t  the axis; we may there- 
fore truncate the infinite series and write the boundary condition as 

a 
(Do - + b[ln2 P + cos2w] +cInP+d 

as ?-to. 

3. Inner solution 

z may be scaled as follows: 
In  the inner region the velocity potential 4 and the independent variables x, y and 

q5 = Ul?) x = E, y = 29, 2 = i.Z, 

provided b/t = O( 1); where 2, y" and E are of order one in the inner region. Equations 
( 1 )  and (2) may now be written as 

with 

pg = a[( 1 + yj.) 2, + cppB Z,] on .Z = aZ(2, y"), 

where all derivatives are now with respect to 2, y", 2. 

expansion is written 
Equations (4) and (5) will now be perturbed for small a and Mi- 1; the inner 

'Pi = go 'Po + g1 'P1 +O(gz), (6) 

where the gi's are the as yet undetermined inner gauge functions. When (6) is sub- 
stituted into (4) and (5) and when the coefficients of like powers of a and M i  - 1 are 
equated, there results a set of boundary-value problems, each of which is of the form 

where V i  = a 2 / a . Z 2  + a 2 / a y " 2 ;  here 2 only appears as a parameter and its dependence 
has not been explicitly shown. At this point it is useful to review the method of solution 
of (7) ;  this will not only give a simple formula for the solution, but will also clarify 
certain of its features. 

Solutions to (7 )  are not unique; the operator is elliptic, but boundary values are 
only specified on a slit E = O*, a, < y" 6 a2. It is easily seen that any two solutions of 
(7) differ by, a t  most, a harmonic function. In  this paper the arbitrary harmonic 
function is determined by matching to the outer solution. We first decompose the 
solution to (7) as follows: 

9 = 9p+9m (8) 
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where kp satisfies 

and yFH satisfies 
v;$bp = S(y",x") 

vg@H = O ,  

$HZ = f * - $ p i  on x" = O*, a, 6 y" < a2. 

227 

In  terms of the complex variables 5 -= g+ix" and 5 -= y"-iz", the above equation for 
kP may be written 

thus $p may be obtained by integrating with respect to 6 and c: 
$ p a  = P ( 5 ,  C ) ;  

where Hp is any harmonic function and is composed of the two arbitrary functions 
of integration. Because the function F i s  given, the indefinite integral 11 FdCdC can 
be calculated explicitly. At this stage, it is convenient, but not necessary, to choose 
Hp; the choice of HD will only affect $H and not the final result for $. This will be 
chosen such that $D is some simple known function, say Y, e.g. when F= 0, Zp will 
be taken to be zero as well. We now discuss the harmonic part of the solution $ H .  

Because no conditions a t  infinity are given, $H will be arbitrary; we may always 
rewrite $H as 

$H = $A+ZH, 
where $A is defined by 

v;$& = 0, 

$AE = f*-'rz on x" = O*, a1 < y" < a2, 

and .&A N b,lnF+b,+ ... as P 4 m .  

The function HH may be any function satisfying 

V i Z H  = 0, 

ZHz = 0 on x" = W, a, < y" < a2. 

The solution for is well known (see, e.g. Ashley & Landahl 1965): 

where T, = {(y1-iJ)2+z"2}8 and the square brackets indicate the jump in the quantity 
across the slit. Thus, $H is given by 

When this is substituted in (8) and the fact that = [$-Y] is used, we have 
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Thus, (9) gives the desired solution to  (7) in terms of the known functionsf*(y") and 
F(fj,2) and the unknown harmonic function XH. It is clear from the above results 
that when F i s  not identically zero, the particular soIution will induce a source or 
doublet distribution on the slit; this is due to the fact that the second and third terms 
in (9) contain [Yz] and Yy.1 in their integrands. In  the theory presented here the con- 
stant K and the harmonic function XH(y",z") may also be functions of P and a. 

We now return to the equations (4) and (5); when (6) is substituted in (4) and (5), 
we find that 

Vi yo = 0, 'peg = 2,(2,@) on z" = O*, a2 < y" < u2, 

provided we choose go = a. The solution to this is given by (9), with 'P = 0:  

Because 'peg is continuous across the wing the first integral may be dropped. Purther- 
more, the above boundary-value problem is satisfied by functions cpo which are anti- 
symmetric in Z, i.e. 

Here we will assume 

cpo(z") = - 'Po(-z"). 

that both yo and So have this symmetry; hence, Ko(2)  = 0 and 

In  order to obtain higher order terms in the inner expansion, it will be convenient to 
anticipate some of the results of matching to the outer solution. The inner expansion 
of the outer solution is essentially the inner boundary condition for the outer problem; 
this must be matched to the large P expansion of ' p o :  

where Xo has not yet been expanded and sinw = E l i : ,  cos w = g/P. We require that this 
boundary condition contain a t  least the doublet 

this will only be possible if, a t  large P, Zo = O(f-l), at  most. Thus, the matching gives 
the large i: behaviour of &o; Zo therefore satisfies 

V 2 Z o =  0, SOs= 0 on z" = 0, a, < g <  a2, 

So = 0(P1) as ?-+a, 
which implies that 

Thus, 

This gives cpo in terms of its jump across the wing and 

(10) 

trailing vortex sheet. This 
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jump is not known a prior;; (10) leads to an integral equation for [yo]. Because the 
primary concern here is the flow far from the wing, it will be assumed that this integral 
equation has been solved and that [yo]  is known everywhere on the wing and in the 
trailing vortex sheet. 

For the purposes of matching, the large P behaviour of yo is of interest; this is 

where 

This is immediately recognized as the potential due to a line doublet. 

yields 
We now discuss the solution for rpl. Substitution of the inner expansion (6) in (4) 

+ 2% To5 P0.G + %a: 'Po5 'Poiz + 2Yo0 'Pos ' p o z  

+ O [ ( M ; -  m2, (R- l ) g l l + ~ ( a 3 , ~ g , ) ,  (12) 

I 
where use has been made of the fact that Vi 'po = 0 and that go = a. In a similar manner 
the boundary condition ( 5 )  may be expanded to yield 

'Pa = a2.Z -a2{-% 'PO2 + (z'Pos)al+ ag,{Z, y1.z + Z,'PlG - Z'P,,,) 

+a3 22, - yoOz +o(a3,agl), (13) K2 1) 
at z" = 0. Here the usual Taylor series' expansions have been used to transfer the 
boundary condition from the wing surface to the .Z = 0 plane. In order to save space, 
the left-hand sides of both equations (12) and (13) have been left in terms of the 
exact potential 'p; these of course, must be expanded in (6) when the actual calculations 
are performed. 

A t  this stage, it  is necessary to discuss the size of the ( M i  - 1) ayOii term appearing 
in (12). In  many theories of transonic aerodynamics, the matching of the near- and 
far-field solutions establishes a relationship between 31; - 1 and the thickness or angle 
of attack of the wing or body. If, in the present case, we were to make no assumption 
about the size of M i  - 1, the matching would show that 

31;- 1 = O ( P ) ,  

where 6 is the ratio of the inner and outer length scales and is related to the angle of 
attack, a, through the equation 

6 
)ln61*' 

a=- 
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In  the following, we shall anticipate this result and use it wherever it is convenient; 
the reason for doing this is to keep the discussion of the inner expansion as concrete 
as possible. 

We may now identify g, and the boundary-value problem for y,; this is 

with 

for U , ~ ( Z )  < j7 < az(Z) provided we take g1 = a2. In appendix A, the result (9) has been 
used to solve equations (14) for yl. Under the assumptions stated there 'pl may be 
written 

a.nd the large ? expansion of y1 is 

where '3""' and $$(iJ, O*; 53)  are given by equations (A 7) and (A 5) respectively, and 

S'(53) as(%) G(2) +-yj- Y+l I (@, dx 
a2 a2 

G(0) = - Ia1 [ ~ p ~ l z ~ . ~ ~ ~ ~ ,  I @ )  - la1 "G14/1, 

and X ( 6 )  is an arbitrary function of 9; it may also have a weak, e.g. logarithmic, 
dependence on a. 

Inspection of (A 10) shows that 9, contains a source-like term as well as one which 
depends nonlinearly on the lift F'(2). Because [qO] =+= 0 on t,he trailing vortex sheet, 
G(6)  =+= 0 there; hence, the source has an afterbody associated with it. The results 
obtained here are equivalent to those obtained previously by Cheng & Hafez (1  975). 

It is clear from equations (1 1 )  and (A 10) that the inner expansion (6) breaks down 
a t  large values of F; this is because nonlinear terms in (4) play an important role 
far from the wing. In  the next section the nonlinear equation governing the flow far 
from the wing is derived. 

4. Outer region 

co-ordinate; thus, we define the outer variables 
Far from the wing the iJ and 2 co-ordinates must be stretched relative to the Z 

and 2 by 

9 = S(a)J,  2 E S(a)2, 

where S = o( 1) as a+ 0. The outer expansion is written 

yo = !,(a) @'O(Z, $92) + dfJ. 
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For the sake of simplicity we shall assume that Q0 is also a weak function of a or S(a), 
e.g. logarithmic in 8. The results we obtain will be in accord with those found by 
Cheng & Hafez (1975). The advantage of the procedure used here is that we need only 
to discuss a one t.erm outer expansion. Barnwell (1975) has approached the outer 
expansion from a different point of view; he primarily discusses three terms of an outer 
expansion having gauge functions which may be written 

where the coefficients of these gauge functions are now independent of a. The dots 
indicate the higher-order gauge functions; aninspection of higher-order terms suggests 
that this is an infinite sequence of terms of the general form fo/IlnSJin, where n takes 
on integral values. The relationship between the two approaches is clear; the outer 
expansion of Barnwell results from expanding our Q0(&, i., o; In 8) for small 6. One can 
show that the results obtained by either approach are equivalent to the appropriate 
order. 

When this scaling and outer expansion are substituted into the exact equation of 
motion (4), this equation becomes 

a y + i  
SYO(@Obd+ @o.a) = (%- l)fo@o.i~+fE,(T@t) +o(c?fo, (M;-  l ) f o , f t ) .  

We now require that the four terms which are shown explicitly balance in the outer 
region; thus 

6 = .Jfo and M i -  1 = O ( f o )  = O(S2), 

and the equation satisfied by Q0 is 

The outer equation is immediately recognized as the three-dimensional, small disturb- 
ance, transonic equation. The boundary condition for this equation must come from 
a matching with the inner solution; this we carry out in the next section. In addition 
to providing the boundary condition for the outer problem, the matching determines 
the scale factor S explicitly in terms of a. 

5. The matching 
In  this section the inner and outer expansions are matched. For the sake of sim- 

plicity, Van Dyke's (1 964) matching principle is used. The more sophisticated tech- 
nique of intermediate expansions gives results identica1 to the ones presented here. 

The two term inner expansion reads 

'pi = a'po + a2'p1 + o(a2), 

where yo and 'pl have been given explicitly by equations (10) and (A 9), respectively. 
The one term outer expansion is given by 

'po = f0 @O(', 9 7 ' )  + O(fO), 
where 9 = S(a)y", 2 = S(a)2  and S =d = o(1). As we have already discussed, we will 
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regard CD, as depending logarithmically on 6; furthermore, we shall take Qo = O(1) 
as a+O. To match these two expansions, the inner expansion must be cast in the 
outer variables and expanded to order f o .  Because i = P/6, the large i expansion of 
q,, and cpl will be useful. The resultant expansions are 

9,-6--+0 - ) 

2?l B (3 
S' P y +  1 (F'2)' P 

Y 1 " G  8 2 16n2 6 
In - + X+- - (ln2 - + cos2 w )  + 0 

We now introduce 
8' 
2n 

Y + 1 (F'2)' ln2 6; x* X---In8+-- 
2 16n2 

in order that a, = O( 1) as a+ 0 ,  we require that %* = O( 1 )  as a+ 0. Thus, the outer 
expansion of the inner solution reads: 

+ X*  + ??-! 0, ( W B  + cos2 w ) )  . (16) 2 16n2 

Here we have dropped the terms of order ad2 = afo which resulted from the expansion 
of cp, and the terms of order a261n 6 and &a2 which resulted from the expansion of ql. 
The first of these is clearly o(fo)  and, if we anticipate the result, a2 = 62/IlnSI as 
discussed in $3 ,  the second set of terms is also seen to be o ( f o ) .  

When the outer solution is written in terms of the inner variables i ,  w ,  B we have 

(Toy = f o  Q0(Z, 6i', w ) ;  (17)  

thus the boundary condition for the outer problem is applied as 9 - t  0. The matching 
principle requires that (16) and ( 1  7 )  match as a --f 0 ;  hence 

+ X* (Inz?+ cos2w)]. (18) 
1 67r2 

Fraenkel(l969) has pointed out that terms containing logarithms, viz. the term having 
a2 as a coefficient in (18), should be matched as a single term. With this in mind, we 
see that the appropriate choice for fo = S2 is a211n61, which further implies that 
6 = 6(a) is given implicitly by 

Thus, the matching requires that, as P-+ 0,  

012 = 62//1nSI. (19) 

1 y +  1 (F'2)' 
(ln2P + cos2 w ) .  (20) 

X* +-+--- 
lln81 )ln81 2 16n2 

According to the analysis presented so far, this is the boundary condition for the 
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outer problem. When the third-, fourth-, and higher-order terms of the inner expansion 
are calculated, they also make a contribution to  this boundary condition; in fact, the 
actual boundary condition is an infinite sum of terms. This is to  be expected as we 
seek the asymptotic expansion of 0, as P+ 0 rather than its value a t  P = 0. As an 
example, we could continue the inner expansion (6) to include third- and fourth-order 
terms 

‘pi = g o ’ p o + ~ l c p l + ~ 2 c p 2 + ~ 3 c p 3 + ~ ~ ~ , ~  

where an inspection of equations (12) and (13) shows that g ,  = ( M i  - 1)  a and g ,  = a3. 
The procedure of this paper could be applied to these higher-order terms to  determine 
their contribution to the boundary condition (20). It may be shown that when ‘p, 

and (p, are included in the inner expansion we must add the following quantity to (20): 

+(F’(A’-B‘-21n&B’))’ln2P+ (F’(8B’- A ’ + 2 X * ’  

+B’ln6))’lnP- ( F ’ B ’ ) ’ c o s ~ w ] + & ~ ~  . 1 
Here R = M:- 1/&,, A = S‘/277, B = y +  1(F‘2)’/32n2 and Xz and%: are harmonic 
functions proportional to P/&. I n  like manner we could also determine the contributions 
of higher-order terms; these contribute terms of even higher order in P .  I n  order to 
simplify the boundary condition for the outer problem, we now make the assumption 
that the outer problem is well-posed provided that the singularities in CD, at P = 0 are 
specified. Because the higher-order terms, i.e. the terms gt ‘pi, i 2 2, in the inner expan- 
sion contribute terms which vanish as P --f 0, we may truncate the boundary condition 
to  include only those shown in equation (20). Thus, the outer problem may be written 

1 1 Mg- 1 
@o% + p @o; + - @I$;, = - @,,, + ( y  + 1)  @o,i, 

P 2  62 
where. as P +  0. 

and, asP-tm, P - W o U ,  @@, @oz-+O.  
Here we recognize the first term as a doublet and the second term as a sourcehaving 

strength (S’/277)( l/lln&l) + ( y +  1 )  (F’2) ’ /16~2,  The first part of the source is due 
t o  the nature of the second-order velocity perturbations on the wing and the 
part depending nonlinearly on the lift is due to  the fact that  the flow in the neighbour- 
hood of the wing, i.e. P = O ( l ) ,  appears as a source flow when viewed from the far 
field. We note also that in theories of transonic flow not involving lift, the solution 
to the outer problem only depends on Mi - l /(y + 1)  62, i.e. the similarity parameter 
of the problem. Here the solution also depends on (y+  1 )  and In&; hence, in lift 
dominated flows, no simple similarity rule holds. Furthermore, i t  is clear that  no 
conventional area or equivalence rule applies for the wings treated here. We refer 
the reader to  Cheng & Hafez (1975) and Cheng (1977) for a further discussion of equi- 
valence rilles applied t o  lifting wings. 
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Throughout t'his paper we have confined ourselves to wings having zero thickness. 
The effect of a wing's thickness is easily incorporated and we will now give a brief 
discussion of it. The equation of a wing having thickness can be written 

z =  &+7Zv 

where the subscript v will always denote functions associated with thickness effects. 
The inner expansion corresponding to (6) would be 

'pi = acpo+7cp,+a2'pl+ ... . 
If we now proceed as we did in § 3, we should find that 

and, as ? -+ 00, 

1 
'pv - ;z;; 

where 

J a1 

When this is cast in terms of the outer variables we have 

where X: = X,- (SV/277) 1nS = O(1). Thus, the thickness would contribute 

7[(SV/2n) In? + X 3  

to equation (18). Inspection shows that the thickness and lift have an equal effect 
on the outer problem provided 7 = O(fo )  = O(S2), where S is related to a: by (19). An 
examination of higher-order terms shows that this is the only additional singularity 
generated by the introduction of the thickness; thus, provided T = O(S2), the thickness 
contributes ~/S~[S,/277 In? + X,*] to the boundary condition in (21). Generally, when 
T + O(S2(a)) ,  where S(a)  is given by (19),  we may neglect either the lift or thickness 
when calculating the outer flow. For example, when T = O(a) ,  the matching requires 
that fo = 7 ,  6 = T $  and that the boundary condition is 

as B - t  0. When T = O(a3),  the matching yields the same results as in the zero thickness 
case; in this case the thickness effects may be considered negligible for the purposes 
of calculating the far field. 

6. Discussion of previous investigations 
In this section we discuss the investigations of Barnwell (1975) and Cheng & Hafez 

(1975), comparing their results and procedures to ours. Both papers give derivations 
of the boundary-value problem governing the flow far from a lifting wing; their 
procedures are seen to differ considerably in both appearance and content from each 
other and the present study. 
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We first discuss the work of Barnwell. It should first be mentioned that Barnwell 
uses a body oriented co-ordinate system in contrast to the wind oriented system used 
here; hence care should be exercised in comparing Barnwell’s work to either ours or 
Cheng & Hafez’s. Barnwell also provides a discussion of the effect of leading edge 
separation; this complication will not be discussed here. Barnwell first presents an 
inner expansion which contains gauge functions which are logarithmic in the ratio 
of the inner and outer length scales. Although our inner expansion proceeded in integral 
powers of a and M i  - 1, we allowed Z and X H ( j j , Z )  in (9) to depend on a; thus, the 
resultant inner expansion is seen to be equivalent to that of Barnwell. A further 
examination of Barnwell’s inner expansion shows that Barnwell has omitted the 
following term, 

from his boundary condition (19). This produces an error in the strength of the equi- 
valent source given by H ( Z )  in his equation (68). 

Barnwell also presents a very careful study of the outer solution. As we mentioned 
in $ 4  he finds the equations governing three terms of the outer expansion; in his 
notation these terms are 

€1 Q 1 f s 2 Q 2 + e 3 Q 3 ,  

where el, e2 and e3 are the outer gauge functions and Ql, Q2 and Q3 are independent 
of any small parameters. The lowest-order term satisfies the small disturbance tran- 
sonic equation and Q2 and Q3 satisfy linear equations which have coefficients dependent 
on the lower-order at’s and theirderivatives. To match the inner and outer expansions 
he needs a small i; expansion of the Qi’s. To obtain this he uses the iterative technique 
of Cole & Messiter ( 1  957) to solve the differential equations governing a,, Q2 and Q3 

for small values of ?;; t,his assures us that the inner expansion of the outer solution 
satisfies the outer equations. For the sake of simplicity, we have presented a more 
intuitive approach to this than that presented by Barnwell. Essentially, we have 
tacitly assumed that a small B expansion of our outer solution will contain all the terms 
necessary to match. It is easy to show that when such an iterative procedure is applied 
to our outer solution, a boundary condition results which is identical to the one pre- 
sented here. Once Barnwell obtains his expansion of the outer solution he matches this 
to the large 7 expansion of the inner solution. Except for the error in the source 
strength mentioned above his results are in agreement with those given here. 

As a final remark we note that Barnwell states that an intermediate expansion is 
necessary in order to  match the inner and outer expansions. He bases this on an 
examination of the large i expansion of the inner solution (his equation 67) and the 
small ?. expansion of the outer solution (his equation 68). Because the leading term in 
(67) is a dipole and the leading term in (68) is a source, he concludes that an inter- 
mediate expansion is necessary. In $ 5  we used a rule concerning the matching of 
logarithms; if this is applied to Barnwell’s expansions (67) and (68) i t  is clear that they 
may be matched without recourse to an intermediate expansion. 

We now discuss the results of Cheng & Hafez. Of the two previous investigations 
the procedure of Cheng & Hafez has the closest resemblance to ours. Their inner 
expansion can be shown to be the same as ours and they use a one-term outer expansion 
similar to that given here. Throughout their paper, Cheng & Hafez use an elaborate 
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parameterization scheme. They also correctly state that their results are valid for 
h = b / l  = O(1); this appears to be inconsistent with the parameterization scheme. 
Specifically, in equation (2.10) they introduce a parameter 

I?* E 8/ (y+  l)h211nel, 

where E is the ratio of inner and outer length scales analogous to our 8; they further 
require that r* be non-vanishing as e-+ 0. This would seem to imply that h must vary 
as Ilnsl-4 which violates their h = O(1) assumption. However, this inconsistency in 
the parameterization does not affect the final results. 

In  $4.3 the outer equation is introduced and a small 7 = er expansion of the outer 
solution is given. In  $4.5 the matching is carried out for the case corresponding to  the 
one discussed here. The boundary condition for the outer problem is given by their 
equation (4.12); this is seen to disagree with our boundary condition (21). Specifically, 
the terms 

appear in their equation (4.121, but are absent in ours. It may be shown that these 
terms correspond to the 0(82/P2) term found in the outer expansion of 'po and the 
O(8P-' In@/& 8/P) term found in the outer expansion of 'pl; these higher-orderterms must 
be truncated in the matching. In  a later publication, Cheng (1977) discusses the 
application of this theory to particular wing configurations; the boundary condition 
used in this study is equivalent to the one derived here. 

With the exception of the errors mentioned above, the results of Barnwell (1975), 
Cheng & Hafez (1975) and the present study are in agreement. The study presented 
here approaches the problem from a more fundamental point of view and is therefore 
believed to be more accessible to the reader. 

7. Conclusion 
We have presented a theory of thin three-dimensional wings without thickness in 

transonic flow. The boundary-value problem governing the flow far from the wing 
has been derived. The calculations presented here are intended to be simpler than those 
of the previously published studies; they also correct errors found in these earlier 
studies. Both the previous investigations and the present study show that there are 
effects which are of second order in the near-field which produce first-order effects in 
the far-field. 
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author is indebted to Drs R. C. Ackerberg, R. E. O'Malley, W. R. Sears and A. R. 
Seebass for valuable comments and criticisms. 
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Appendix A. Solution for 'p, 

parts: 

where 'pf  satisfies 

with cp i  = ( C ~ ~ ~ Z ) ~  on 2 = O+, a, < y" < a2; 

9'' satisfies 

Because of the linearity of the Laplacian i t  is permissible to break 'p, up into three 

'PI = 'pf  + 'pU+ $(y + 1 )  'PI", 

q ' p f  = 0 

a v; 'p" = - a2 ( ( P O D  + &) 

with cp: = cpo,i.Z, on z" = O*, a,  < y" < a2, 

and 'pm satisfies 

with rpz = O on z " =  W, a, < g  < a2. 

Equation (14) admits solutions for cpl which are symmetric in z", i.e. 'pl(2) = cpl( -2).  
In the following we will assume that 'p, as well as 'p', cp", and 'p'" are symmetric in 2.  

The above problem for 'p' is homogeneous; thus, we will not only take [$I = 0, 
[X&] = 0 andf = (cpoDZ); in (9),  but Y = 0 as well. Thus, 

where &?' is the arbitrary harmonic function found in equation (9). An integration by 
parts yields 

Here we follow Cheng & Hafez (1 975) and require that ['pas] = 0 a t  the leading edges 
of the wing and the outer edges of the trailing vortex sheet. Thus, 

The large f behaviour of 'pf  is 

In the large P expansions of 'p', 'prf and y"', we will not expand the arbitrary harmonic 
functions; this behaviour must be obtained from the matching. 

We now derive the solution for 'p". The function 9 ( g ,  c; Z )  in 8 3 is seen to be equal 
to 4('pO5 'p0&; Cheng & Hafez (1973) have shown that when the arbitrary function 
Xp in Q 3 is taken to be identically zero, the function YP, or here"", is given by 

yp" = (*'p&, 
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and, from the boundary condition for 'po,  we have 

Y;(g, o q  2 )  = (po2 2, + 'po ZZ2. 

Thus, the solution for 'p" which is symmetric in z" is 

(A 3) 
1 a2 

'p'r = ~ ~ 1 2  - GS,, ['pol 222  1n71 dY, + ~ ( 2 )  +*". 
For large 7, 

'p" N ~G( j . ) ln i+X$)+&" '+O 2n r) ; , (A 4) 

where 

G(W = - ~:h0l%sdY1. 

Finally, we consider the problem for 'pm. The function 9(5, [; 2)  in 5 3 is seen to be 
a('p:dC, %; 2:>>/a2, where 

where ['pOzli s ['pO2] (yi; 2) ,  i = 1, 2. Cheng & Hafez (1973) have shown that Y, or here 
Y", can be written 

y" = - - 1 - a aa az~ 'po211~ 'po . t121n(5 -Yl*~-Y1)  dy1dy2 
64n2 aj .Sa lJa l  Y1-Y2 C-Y2 5 -Y2  

provided that we choose Xp (see 5 3) as follows 

At z" = O*, Cheng & Hafez (1973) have also shown that 

g a2 

y!-f@,O*,@ = h&& l a (  [9021(ij;~)P.v./a2 1I ' pO. t I l  ( I n I Y l - g l + ~ - ) ~ Y l ) ,  (A5)  

where the P.V. indicates that the Cauchy Principal Value of the integral is to be taken. 
Thus, the solution for qrr' which is symmetric in z" is 

' p / r r  = Y - ~ J ~ ,  [ ~ ~ ] ~ n r , d y , + . ~ ~ ( ~ )  +z", (A 6) 
1 a2 

where, in terms of the real variables y" and z", Y" is 

and Y! (ij, O*; 2 )  is given by (A 5). For large values of P, Y'" has the behaviour 
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where F' = (a/&) F(0).  Thus, as i-tco 

where 
a2 

1 ( Z )  = - Ial [Y;]dyl. 

Thus, 'pl is given by the sum of the terms 'p', 'p" and a(y + 1) 'p"'. The large i: behaviour 
of 'pl may be obtained by equations (A 2), (A 4) and (A 8); this may be written 

where 

and 
X1(F,01;Z) = f l + x " + T H J f / .  Y+l 

As we did in the discussion of yo, we will now anticipate some of the results of the 
matching to determine Sl for all values of 2, y" and 2.  We will require that the boundary 
condition for the outer problem contains contributions from 'p', 'p" and 'p'"; the only 
way that this will be possible isXl = O(ln 7) at most, as i:+ 00. This condition, combined 
with the fact that  HI is symmetric in z" and satisfies 

V $ Z l  = 0 for all Z,y",Z", 

and HIE = 0 on Z =  O*, a, < y" < a2, 

implies that  HI is a function of Z alone. If we absorb this function of? in Y ( Z )  we may 
now write 

and as i + 00, 

REFERENCES 

ASHLIIY, 13. & LANDAHL, M. 1965 Aerodpamics of Wings and Bodies. Addison Wesley. 
BARNWELL, R. W. 1973 A . I . A . A . J .  11, 764. 
BARNWELL, R .  W. 1975 N.A.S.A.  Tech. Rep. TR R-440. 
CHENG, H. K. 1977 A . I . A . A . J .  15, 366. 
CHENQ, H. K. & HAFEZ, M. 1972 A.I .A .A .  J .  10, 1115. 
CHENU, H. K. 6 HAFEZ, M. 1973 USC Engng Rep. no. 124. 



240 M .  S.  Cramer 

CHENG, H.  K. & HAFEZ, M. 1975 J .  Fluid Mech. 7 2 ,  161. 
COLE, J. D. & MESSITER, A. F. 1957 2. angew Math. Phys. 8,  1. 
FRAENKEL, L. E. 1969 Proc. Camb. Phil. SOC. 65,  209. 
HAYES, W. D. 1954 J .  Aero. Sci. 21, 721. 
OSWATITSCH, K. 1952 Proc. 8th Inst. Cong. Theor. Appl. Mech. Istanbul. 
SPREITER, J. R. & STAHARA, S. S. 1971 A.I.A.A.  J .  9, 1784. 
VAN DYKE, M. 1964 Perturbation Methods in Fluid Mechanics. Academic. 


